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A model of nonlocal potential and alpha decay of
deformed even nuclei

M., L. CHAUDHURY
Indian School of Mines, Dhanbad, Bihar, India
MS. received 28th September 1970, in final form 10th December 1970

Abstract. The problem of o decay of deformed even nuclei is treated here by
assuming the barrier to be the usual anisotropic electrostatic potential superim-
posed by a nonlocal e—nuclear potential. The method employed is similar to that
developed in a recently published work on « angular distributions. Accordingly,
the electrostatic potential is, for simplicity, described by the usual quadrupole
deformation parameter Sz,0, while the nonlocal part is taken for the same
reason to be spheroidal, described by a deformation parameter ;. The latter
potential being momentum-dependent, ¢; may naturally take different values
for different o angular momenta /. Furthermore, the barrier penetration effects
are taken to be the main factors governing hindrances to the excited state transi-
tions. With these assumptions a formula for hindrance factor, (H.F.),, is
derived.

Then from straightforward calculations, and with a single value of ¢ for
different nuclei (82,0 being known from experiments), the values of (H.F.)s
are found to be within fifty per cent of the empirical values, whereas the values
from the shell-model theory or from a purely Coulomb or static barrier hypo-
thesis show large discrepancies. Similarly, for [ < 6, overall agreemenf for
an average €; is better than obtained previously. On the other hand, it is
remarkable that for the best-fit values of an ¢, varying slightly with nuclear mass
A and charge Z (which appear not unreasonable by analogy with the similar
variations of fBs.0) one obtains exact agreement with (within ten per cent) all
the empirical (H.F.); values to be discussed here.

1. Introduction

The intensities of « fine structures for heavy elements, when calculated on the basis
of the simple barrier penetration theory, are found to be systematically greater than
the observed values by very large factors (up to 15 000) for higher ¢ angular momenta /
(cf. Perlman and Rasmussen 1957). After the discovery of the rotational level struc-
tures in the daughter nucleus (Bohr and Mottelson 1953, Perlman and Asaro 1954)
the theories of « decay of deformed nuclei were developed in a number of rapidly
succeeding papers (cf. Hanna 1959} by taking into account various effects of deforma-
tions of the nuclear surface as well as of « angular momentum /. It was then generally
concluded that if the barrier is assumed to be purely Coulombic and if the nucleus
is axially symmetric, and also if the z wavefunction on the nuclear surface is a constant,
then the agreement between the theory and experiment is not satisfactory. For ex-
ample, in his comprehensive treatment, Fréman (1957) has shown that with chosen
values of 8, o—which are, however, different from empirical values—the variational
character of b, with Z is not theoretically reproduced. Gol'din et al. (1958) have
included higher multipole moments in their theory and also discussed the difficulties
involved in some of these methods.

On the other hand, Rostovskii (1961) has discussed the problem by assuming the
nucleus to be nonaxial (c¢f. Davydov and Filipov 1958), a treatment unlike that in
the above papers.
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But he finds that with the chosen values of the parameter y, which measures devia-
tions from axial symmetry, the calculated intensities still largely differ from the
experimental data except for the transitions to 27 states.

More recently an extensive study of this problem has been made by Mang
(1957), Mang and Rasmussen (1962) and Poggenburg et al. (1969). Their basic
formulation is to calculate the « cluster probability, taken to be the main factors
governing the hindrances to excited states, in terms of the shell-model product wave-
functions of the constituent nucleons. A simpler treatment which also has a bearing
on the alpha formation and nuclear shell model was given by Brussard and Tolhoek
(1958). As for the potential barrier the Coulomb potential was superimposed by an
external «—nuclear potential. But, as discussed elsewhere (and below), there are
reasons to believe that the said «—nuclear potential is nonlocal in character. In
Mang’s theory this has been assumed to be static. It must be stated that there are
no indications from the shell-model theory to support a static e-nuclear potential.
Also, a static barrier with shell-model effects is inadequate, as may be seen from
columns 7 and 10 of table 6. Wilkinson (1961) has questioned the shell-model theory
taking the calculations by Harada (1961) to show that the calculated values are too low
by factors of 102 to 10%, depending on the detailed assumptions made. Besides, it has
also been noted that the conclusions of the shell-model theory are critically dependent
on the choices of the potential barrier. Hence the need arises for reviewing the
situation.

An alternative approach to the « decay problem would therefore be to assume
that the « cluster probability is not largely dependent on the o angular momentum.
This assumption is not new. The earliest work in which the « decay reduced widths
82 for excited states are taken to be the same as for the ground state transitions is
the theory by Bethe (1937). In many subsequent works this valuable concept was
used (cf. the review article by Rasmussen 1965). Obviously if we assume 8, ~ 8,°
then the explanation of the hindrance factors will have to be sought in terms of the
variations of the only other factor in the formula for the decay constant A—namely
the penetrability factor P. In calculating P the assumption that a purely electrostatic
barrier is an oversimplification and that this should be superimposed by an external
x-nuclear potential is now established (cf. any recent paper on « decay). But certain
points about the character of this «—nuclear interaction, although mentioned more
than once in our previous papers, may be recalled. It has been known for a long
time (Van Vleck 1935, Fay 1936, Bardeen 1937, and see the review article by
Glassgold 1958) that the average potential felt by a nucleon is dependent on its
velocity. Thus the statistical nuclear model with exchange forces gives an interaction
between a nucleon and its neighbours of a nonlocal type in coordinate space. The
energy dependence of the nuclear interaction is also evidenced from a number of
experiments (cf. Weisskopf 1957) and from the observed variations of the optical
parameters, which are however not uniquely known, in the o scattering experiments
(cf. for example Igo and Thaler 1957, El Nadi and Riad 1965, McFadden and Satchler
1966 and Thompson et al. 1967).

A phenomenological interaction of nonlocal type has been used by Frahn (1956)
and other authors to account for the modified propagation character of nucleons
within nuclear matter and the said velocity dependence of the optical parameters in
w—nuclear scattering. An equivalent interpretation due to Wheeler (1936) is to assign
a reduced effective mass to the interacting nucleon; he used this method to account
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for nuclear saturation. The nucleon—nucleon interaction has also been discussed, for
example, by Levy (1952) and by Levy and Marshak (1955), in terms of a nonlocal
operator in the meson theory of nuclear forces.

In the present context we are not directly concerned with the question as to the
equivalence of the above formally different approaches to the many-body character
of the nuclear interaction. What we intended to emphasize is that if the interaction
between a nucleon and its close neighbours is #ot independent of the state of the
interacting system then this should be true in the « decay process also. Of course,
if the effect of such a state-dependent a—nuclear potential is not negligible then this
must be capable of explaining some of the observed characteristics of « decay. Most
important of them is the finding that the hindrances to the excited state transitions
increase systematically with increasing « angular momentum /. We shall show here
that this is a natural consequence of the / dependence of the said nonlocal barrier
penetration probability.

From the above considerations it was proposed (Chaudhury 1960) that the nucleons
in the two separated bodies (namely, the « particle and the daughter nucleus) interact
in a way which may be represented by an overall nonlocal a—nuclear potential. The
justification for an overall potential is provided by the considerations based mainly on
the works of Brueckner and Levinson (1954, 1955, also cf. Bethe 1956) on the many-
body problem of nuclear structure.

One significant difference between the scattering problem and the « decay process
is that the parameters of the optical potential chosen to fit the scattering data involve
bombarding energies quite high compared with the « decay energy. Also, the motion
of a nucleon in the nuclear matter is different from that of an o particle in the peri-
pheral region of the daughter nucleus. Therefore, in choosing the appropriate
form of the nonlocal interaction kernel, one has to depend on the trial method.
Initially we assumed this to be the same as that used in the effective mass approxima-
tion. This form of nonlocality amounts to replacing the reduced mass of the « particle
by the variable effective mass u(r), in the Gamow factor, which, however, is found to
lead to too large a change in the barrier penetration probability (cf. Chaudhury 1963). It
thus appeared that the momentum dependence of the «—nuclear potential was different
from that associated with the effective mass approximation. This point was also
noted by other authors (W. E. Frahn private communication, see also Preston 1963).
Hence in a recent paper (Chaudhury 1966) a simpler isotropic nonlocal potential
was defined in terms of which it was possible to explain (agreements being in most
cases within 25 per cent of the observed values) the relative intensities of « spectra,
particularly the parity-unfavoured transitions (not previously explained) for spherical
nuclei with charge number Z < 92 and neutron number N < 138. More recently
this spherically symmetric nonlocal potential was suitably extended (Chaudhury
1970 to be referred to as I) to take into account the effects of deformations of the
nuclear surface, and is found useful in interpreting the observed anisotropy of the =
emissions from oriented 2*”Np nuclei. In view of these successes, and considering the
experimental basis, it is reasonable that the problem of « decay of deformed nuclei in
the region A > 226 and N > 138 be treated along these lines. We shall, however,
restrict ourselves here to the even parity « transitions in the even—even nuclei, to avoid
further complications.

In § 2 we set up relevant wave equations by taking into account the above con-
siderations regarding the potential barrier. For simplicity, we confine our attention
to quadrupole shapes of the nuclear surface so that the electrostatic part is described by
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the parameter S, ,. To be consistent, the nonlocal part of the barrier will be des-
cribed by a spheroidal deformation parameter, say ¢;, In our calculations, the values
of By o will be taken from the list of values by Bell et al. (1960), from the measurements
of half-lives of excited states in differznt nuclei. We might as well take the somewhat
different values of B, given by Rester et al. (1961) obtained from the spectra of
internal conversion electrons from the Coulomb excitations of heavy elements. But
the data available by the latter method are limited. Again, since the o~nuclear
potential itself is momentum-dependent, its deformation parameter ¢, may naturally
take different values for different /. All the other parameters involved are known
fairly accurately either from previous experiments or from theoretical considera-
tions (see §4). Furthermore, as already mentioned, the main factors governing
hindrances to the excited state transitions will be discussed here in terms of the
above-mentioned barrier penetration probability, and it appears that for the present
problem the assumption of large variations with / of the « cluster probability is not
necessary.t

Approximate solutions of the wave equations are obtained by following a
three-dimensional WKB method due to Christy (1955) and adapted to the present
problem. In this way the desired formula for the « decay constant and hence the
formula for the hindrance factor is obtained. In the next section the results of cal-
culations are presented for the average €;, as well as for its best-fit values, and
compared with the experimental data.

From straightforward calculations it is found that with a single value of e; for
different nuclei the values of (H.F.)g are within fifty per cent of the empirical values,
whereas the shell-model theory and calculations on the basis of a static or the purely
Coulomb barrier hypothesis differ largely from the empirical values. For [ = 6
and with a single value of €g for different nuclei, the same order of agreements are
obtained except for the unusual case of 22°Th (with (H.F.)s = 13 000) for which €4
is to be chosen somewhat smaller. For ! < 4, the effects of momentum dependence
_of the barrier are not expected to be as predominant and the dependence of ¢, on 4
and Z is found to be more pronounced. Itis however remarkable that for the best-
fit values of an ¢, varying slightly with 4 and Z (which is not unreasonable, by analogy
with the similar variations of §; ;) one obtains exact agreements with (within ten per
cent) all the empirical (H.F.); values to be discussed here.

Nevertheless, it should not be forgotten that there are other important problems,
such as the effects of = cluster probability, multipole moments and those due to
nonaxial shapes of the nuclei. However, the barrier effects, particularly for higher
« angular momentum /, are clearly predominant; also, if one intends to study the
nonlocal effects, it is necessary to restrict the number of unknown parameters to a
minimum and hence we do not consider them here.

2. Wave equations and their solutions

The solutions of the Schrddinger equation for the deformed nonlocal barrier
discussed above are given in I. We shall here briefly indicate the method of arriving
at these solutions.

It has been shown in I that the equation for the radial part of the partial « wave

WP) = 17T Yinl8s 0)

+ This condition was also found valid for the « decay of spherical nuclei (cf. the relation
F, ~ F, in Chaudhury 1966 p. 184).
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for the isotropic barrier takes the form

#? [(1+1
2—; (U,”(T) - _(__;—:_) Uz(f’)) +{E, —uo(r) ~ v,0(r)}
h2
X (1 -+ ‘z_hﬁz 7)0(2>(7)) L/TZ(T) = bﬂ_l/Q.vo(l)(;,) Dvl/(r) (1)

where primes denote differentiation with respect to 7, p is the reduced mass,
uo(ry = 2(Z—-2)é?jr (Z being the charge number of the parent nucleus), ¢ is the
electronic charge, and the isotropic nonlocal energy is of the general form

v, 0(r) = V(1) p™(r) 2)

where V(r) is the static part assumed to be given by the optical model potential;
the purely nonlocal part of order # (shown as superscript) is given by

p(r) = g(”’(z){ 1— Z(i:) ( 1 i::g)} 2.1)

where 2 = (r— R;)/b, R, is the inner turning point and b is the range of nonlocality,
and

~

g9(z) = H{1+277112 J exp( — %) dz}

"

gM() = H1 —ZJ exp(—2?)z dz}

g9(z) = {1 +47"172 J exp(—2?)2? dz}. (2.2)

The right hand side of equation (1) is small—as g(2) vanishes except at the
immediate neighbourhood of R;—and will be ignored.

Now for deformed nuclei both u4(#) and v,(r) should be replaced by the cor-
responding angle-dependent terms u(r’) and ©,"(r'), referred to the body-fixed
system of coordinates #'(= 7, 8, ¢’) with the same origin as for the laboratory system
of coordinates, ¥(= 7, 0, ¢). As is well-known for quadrupole deformations,

u(t') = uo(r) +us(#)Ba,0 Y 2,0(6") (3)
ug(r) = Fuo(r) (Ro/r)? (3.1)

and R (= 7o(A4—4)*/® x 1071% cm) is the radius of a hypothetical nuclear sphere and
is connected to the spheroidal surface R(6") by the relation

R(8") = Ro{1+B2,0Y2,0(6")} (3.2)

On the other hand, for the axially symmetric nonlocal potential we find that (cf.
paper 1)

where

2 (1) = o V() = elpp V(7)) +rV(r) p™ '} Vg 0(0")
+(5/8m)erp () V(r) +rV(r) p™' (r)} 4)

where ¢ = {¢;+ (%) '%,”}. Collecting these terms, the equation for the deformed
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barrier corresponding to equation (1) becomes

Ay = Fi2p (5)
where
2

2 b
P = 2 () 4200 )+ Sh () + ) - B}-E). (G.1)

Now the procedure to solve equation (5) differs significantly from that generally
used (cf, Davidson 1965) in the case of the electrostatic barrier for which there is no
actual inner turning point. On the other hand, the existence of such a turning point
requires that the extremal equation should be taken as

Ra e
f F, dr+f Fydr+... = minimum (6)

where P’ is a point on the spher01dal nuclear surface R(6") (cf. equation (3.2)) and P
is somewhere within the barrier region. In the present context the lower limit in
equation (6) should nowhere be less than the inmer turning point (which in three
dimensions will now be denoted as Ry(#") instead of R,—cf. below equation (2.1)).
This is because F}? in the integrals changes from a positive value outside R,(#’) to a
negative value inside it, which is not allowed.

Now, eccentricity o being small, it can easily be shown that

Ri(8") = R, {(1-4062)+40%P; o(cos §')}. (7)

Since the resultant deformation depends now on both S, o and ¢, we introduce for
convenience, by analogy with equation (3.2), an ‘effective’ deformation parameter
&, such that

R(6") = R{1+2Y;4(8")}. (7.1)

To our approximation, retaining terms up to the order 4% and €,?, we get from equa-
tion (5.1):
Wr, 07) = {22 BH{S () + T, 0') (8)

PF) = (1gq— E)2. (8.1)

The effective potential u.;; now replaces the previous isotropic Coulomb potential
#o(r) and

where

tere = {uo(r) — v ¥(r) — Avy} (8.2)

where

Ay = (b2p282) po@ V(1) {uo(r) — V(r) p/¥(r) - By} (8.3)
Again the angle-dependent part in equation (8) after simplification reduces to

Tr, 07) = (1128 )[{ua(r)Ba,0 — Walr)é — (AK, — AK,)} Y, o(8")

+ Wy(r)5€,2/8n] 8.4)
where
Wy(r) = V(r){ip” —1p@' (1)} (8.5)
AK, = (0%u/287) po@(r)V(7) [ua(r)Bs,o + Fer{uo(r) — Ei} — €,V (r)
x {27 (r) =7 (r)}] (8.6)

Ky = {(Bp252 ) V(r)po®' (r)eiHuo(r) = V(r)p/® — Ei} (8.7)
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with 7 = 7 x 1018/0-:574. Now the expansion coefficients in the state vector depend
on a number of quantum numbers in addition to / and, instead of the U,(r) of equa-
tion (1), let this function be denoted in the body-fixed and space-fixed systems of
coordinates by Si',, x(r) and by B{, x(r) respectively. The subscripts i and f
indicate the 1n1t1a1 and final states, /, m and v denote the « angular momentum and its
projections on the 2 axis (lab. system) and on the nuclear axis of symmetry, 7, M and
K are the total angular momentum of the nucleus and its projections on the two axes
respectively. By using the rotation matrix the connection between S and B is ob-
tainable as

Simxr) = 2 (=153, 1, Ketv, —=vje, KBy (7)- ©)

v

Now we apply the mean-value theorem in evaluating the integral

f " S dr = (=K@ f ' o)~ By s (10)
where e e
K(£') = [{e/L") + Av( )} {uo({") — Ef] (10.1)

with Ry(f") < {’ < R,. Since the minimum of Ri(ﬁ’) and R, are nearly the same,
for calculation purposes we can set K({') = K(R,)in equation (10.1) without appreci-
able error. _

Now, using equations (10), (10.1) and (8) in (5), and after simplification, we obtain
the solution

Bl?‘j,Kr(r) =

( U(E,, r

U(E, R )) Z hy v‘]z (a, §) (11)

with the boundary condition that the % wave function (8, ¢) on the nuclear surface

is expanded as
ol @) = 2 2, by Ve (0, ) (12)
vy

where the modified matrix

a1, ) = [ Oy expl= {6+ aPao(8)6rsin 6 8 (13)
and °
a = {(&)? I+ (I~ )} (13.1)
Fr= 2t) [ [1a0)Ba0 = VORI O0) 1 ()} MK, ~ AR, 2
Ra
X {t(r) = 9@ — Aoy — EZ}”Q] dr (13.3)
_ @R VORI -5 )
72 ) ) o)~ de - By (134
= 3o [(kR )1 — (kR 20H(1 — K2+ 5, (13.5)
where

Y = AZ-2)FQuRREM k= QuE)2[k (13.6)
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and K, = K(R,). Now U, occurring in equation (11) is obtained by solving equa-
tion (1) by the usual method of approximation as

ol(l+1
U(E, R,) = Uo(E, R,) eXP(}O ( “—)]o) (14)
X
where
Yo = {(Z-2)P|E}? (14.1)
and
By | 4 (ub2/242)V () _ 4 (2(\)
I, = f (wb22E)V(N{E™ ~po® (1) (14.2)
o PH{Uo(7) = V(r)g'® — E; — Agg 12

where R, is the outer turning point, that is, 2(Z —2)e?/E,.

3. Alpha-decay constant

The « decay probability, with angular momentum / and for the transition
from the initial state j;, K, to the state j;, K, is, by definition,

Mo = Timitdme| ST ()2 (15)

where the S function is given by equations (9) and (11).

From what has been said in §1 about the « cluster probability we can set
hy .y € ho o in equation (11) and also v = 0 for even—even nuclear transitions. Hence,
neglecting higher order terms, the formula for the hindrance factor with = energy
normalized for A, , is finally obtained as

_ fgnollor a0
l ‘ q1,0(¢1, @)

In the next section we give the results of calculations of hindrance factors from
equation (16). Here we may mention that equation (16) contains the centrifugal term
and ¢, o, both of which involve exponential functions of /-dependent nonlocal para-
meters. It is therefore expected that the results are quite sensitive to the deformation
parameter ¢,, particularly in the cases for large values of / (see figure 3).

(M ). (16)

(H.F.)

4. Results

To evaluate hindrance factors from equation (16) it may be seen that the integrals
I, occurring in equation (14.2) and ./, and ., (cf. equations (13.3) and (13.4))
which occur in {; and g, are not analytically known. We therefore calculate these
integrals by taking advantage of a computer and by using a modified Simpson’s rule
discussed in I. In the present calculations the number of strips of width 4 for the
entire integral range R, to R, is taken to be 100. On the other hand, for the quantities
£'%(2), that is, Erf(z) and p,® defined in equations (2.2) and (2.1) and involved in the
integrals I,, .#; and .#,, one obtains sufficiently accurate values with only 60 strips
for every value of z.

Now of the different parameters involved—namely, the range of nonlocality 5,
the hypothetical nuclear radius R, (cf. equation (3.2)), the inner turning point R(6")
(equation (7.1)), the eccentricity o (cf. below equation (7)), the outer turning point R,
the quadrupole deformation parameter 8, and the nonlocality parameter ¢,—only
the last one is unknown. The other parameters are known fairly accurately either
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from experiments or from theoretical considerations. In I we found that the
nonlocality b is in the range 0-5 < & < 0-9 fm and the penetration factor is not very
sensitive to the values of 5 within this range. We shall, therefore, take & = 0-7 fm.
In the definition of R (= 7o x (A4 —4)*"®x 10718 cm) there is some ambiguity in the
choice of 7,. In «decay theories 7, is generally indicated as #o ~ 144, whereas
smaller values are obtained from other sources (cf. Hofstadter 1956). In.the present
calculations it is found that r, may be taken as small as 1:20. Next, the inner turning
point Ry(8') is obtained for different " by solving the equation F;> = 0 (see equa-
tion (8)) by the iterative method and by neglecting small terms such as Wy(r)(5/87)e?
and those involving products of 3,62 and €;52. This makes the values of R,(#') slightly
different from the exact values. But it can be shown that the difference is not more
than one strip-width 4 and may be ignored. We thus obtain the values of R(6)
for 8 = 0 or m, cos~}(1/3)*/2 and for §' = /2, giving R,, R and R,,;, respectively.
The eccentricity o is then easily obtained from R, and Ry,;,. It may be mentioned
that the empirical hindrance factors are obtained by taking the nuclear radius for the
ground state transitions to be the same as for the excited states. Hence to be con-
sistent we have calculated Ry(6') by setting / = 0 for the different o energies E, in a
fine-structure pattern for a given nucleus. The outer turning point R, is of course
given by 2(Z—2)e?/E;. Furthermore, as already mentioned in § 1, 8, will be taken
here from the list of empirical values (Bell et al. 1960) except for 2#6Cf, 250Cf and

Table 1
Parent  «-particle Empiri- Non- Inner turning point Eccen-  Effective
nucleus energy, ({) cal local R, (6) (fm) tricity deformation
E,(MeV) B2 para- _ G %
meter R, R Ruin  (equa-  (equation
€ tion (7)) (7-1)
288Py 4.996 (8) 0.251  0.350 9.187 9.059 8.974 0.214 0-0224
5-195 (6) 0.280 9.154 9.064 9.006 0.179 0.0157
5.352 (4 0.160  9.095 9.069 9.051  0.098 0.0045
5-452 (2) 0.200  9.118 9.072 9.041  0.130 0.0081 "
242Cm  5.596 (8) 0-271  0.390  9.245  9.099  9.005  0-226 0.0254
5.806 (6) 0.280 9196 9.105 9.055 0.174 0-0157
5.964 (4) 0-135  ¢.123  9.109 9.102  0.067 0.0023
6.066 (2) 0.200  9.160  9.112 9.090 0-123 0.0080
230Th  4.436 (6) 0197 0165 9.029 8-984 8.965 0.119 0-0079
4.471 (4) 0.220 9.059 8.985 8.948 0.156 0-0130
4.615 (2) 0.-220 9.063 8.989 8.953 0-136 0.0130

238Py 5.442 (6) 0-257  0.250 9.120 9.048 9.002  0.161 0.0126
40Py 4.851 (6) 0-263  0.300 9-177 9.078 9-013  0-188 0-0172
2#Cm  5.511 (6) 0.278  0.260 9.194 9.119  9.077  0-159 0-0129

5.658 (4) 0120  9.131  9.124  9.119  0.050 0-0013
248Cf 6-462 (6) (0-280) 0.290 9.240 9.151  9.094 0.177 0-0153
6-613 (4 0-160  9.179 9.156  9.142  0.089 0-0041
6-711 (2) 0175  9.190 9.159 9.140  0.104 0-0034

228Th  5.208 (4) 0195  0-240 9.067 8.989  8.939  0-167 0.0137
e 5638 (4) 0220  0.250 9.086  9.002 8.958  0.167 0.0148
284U 4.598 (4) 0-233  0-240 9.091 9.019 8.973 0.161 0.0128
28877 4.020 (4) 0.233  0.200 9.101  9.049 9.016  0:137 0-0092

4.147 (2) 0.210 9.110 9.053 9.016  0-143 0-0100
250Cf 5.980 (2) (0-282) 0.160 9.203 9.183  9.169  0.086 0-0034
3%Fm  7.064 (4) (0-288) 0-180 9.268 9.236  9.217 0.104 0-0055

7-158 (2) 0-150  9.254  9.238  9.229  0-073 0.0027
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2%¢Fm for which B, are not known. We have chosen the values shown in parentheses
in column 3 of table 5 from the general trend in the variation of 8; in this region.
We are thus left with only one unknown parameter €,. In column 9 of table 6 we give
the calculated (H.F.); values with the best fit values of ¢;,. In order to show that the
results are not particularly dependent on the individual varviations of €, with A and Z,

Table 2
Parent 7 z f(= uo(¥) us(NBz  v9F  Aw, Wa(r)é
nucleus (1072 cm) (=(—~R)/b) (§5) MeVy  (MeV) (MeV) (MeV) (MeV)
(equation (equa- (equa- (equa- (equa~
¢3)) tion tion tion tion

@1y @) @3 B3

9.187 0.182 0-0045 28.839 2.846 22.306 0.618  48.088

9608 0.785 0-2544 27.574 2.487 15.265 1.882  75.770

10-030 1.387 0.7212 26.415 2.187  8.379  2.226  36-990

238Pu 10-451 1.989 0.9518 25.350 1.933 4.148 1.508  31.819
(I =8 10.873 2591 0.9968 24.367 1.717  1.999  0.793  16:155
11.294 - 3.193 1.0000 23.457 1.531 0.959  0-384 8-065

12.558 4.999 — 21.096 1-114  0.106  0-039 0.995

13.823 6-806 — 19.183 0.835 0.012  0.004 0.120

9.254 0.023 8.84x10-¢ 30-497 3.554  22.678  0.257 6-358

9.545 0-438 0-0563 29.569 3.239 19477  0-903  25.480

9.835 0.853 0.3069 28-693 2.961 14.217  1.737  29.800

2%¢Fm  10.125 1.267 0.6399 27.873 2:713  9.-328  2.060  24.333
(=2 10416 1.682 0.8704 27.095 2-492 5791 1.765 16.738
10-706 2-097 0.9675 26-360 2:295  3.317 1.242 10.708

11.578 3.342 1.0000 24.376 1.814  0.772  0.290 2.561

12.449 4.587 — 22-670 1.460  0-169  0-059 0.395
Table 3

Parent 7 Uarr AK, AK, —A, A, A

nucleus (10-**cm) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
(equation  (equation (equation (see § 3)
(8.2) (8.6) (8.7)

9.187 5.914 —12.507 0.205 17.770 12.998 2.742

9.608 10.428 — 4.570 5:413 35.605 24.284 4.321

10.030 15.808 5.948 4.115 32-574 21.163 3.251
238Py 10.451 19.690 7:352 0-690 21.880 13.662 1.815
(I =8 10-873 21.577 4.735 0.040 11.140 6-953 0.921
11.294 22115 2.537 0.001 5.260 3.320 0-460
12.558 20-959 0.298 0.000 0.053 1.130 0.057
13.823 19.159 0.032 0.000 —0.440 -0-209 0.007
9.254 7-562 — 0.537 0.000 1.253 0-887 0-173
9.545 9.189 — 4.266 0.624 10.248 6-166 0-695
9.835 12.741 — 1.420 2.221 13.812 8:125 0-813
25¢Fm 10.125 16.485 1.865 1-981 12.898 7.445 0-664
(=2 10416 19.544 3.187 0-793 10.034 5.703 0.457
10.706 21.600 2.877 0177 6-718 3.797 0.292
11.578 23.310 0.869 0-000 0.949 0.578 0.070

12449 22.440 0.197 0.000 0-439 -0-196 0.016
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it is desivable that we should give, side by side, the corresponding values, particularly of
(H.F.)g and (H.F.)¢, for a fixed 5 and eg respectively (excepting 22°Th, cf. column 8
table 6). The results clearly show that the probable dependence of ¢, on 4 and Z,
for large /, is largely masked by the dependence on alpha angular momentum. It is

1=8
E, = 4.996 MeV
Nonlocal Theoretical
parameter hindrance
€ (H.F.),
(equation
(16))
0.26 99679
0-305 31091
0.32 22679
0.335 17024
0.35 12766
0.38 8066
Parent Empiri-
nucleus I cal
B2
285Py 8 0.251
2¢2Cm 8 0.271
230Th 6 0.197
236Py 6 0.257
238Py 6 0.251
240Py 6 0.263
242Cm 6 0.271
244Cm 6 0.278
246Cf 6 (0.280)
228Th 4 0-195
230Th 4 0.197
230> 4 0.220
234U 4 0.233
23877 4 0.233
238py 4 0.251
2¢2Cm 4 0.271
24¢Cm 4 0.278
28Cf 4 (0-280)
2%¢Fm 4 (0.288)
230Th 2 0.197
2387J 2 0.233
288Py 2 0.251
2¢2Cm 2 0.271
245Cf 2 (0.280)
250Cf 2 (0-282)
25¢Fm 2 (0.288)

€;

0.35

0-39

e

(¥,

w

Table 4
=6 l=4
E, = 5.195 MeV E, =5.352 MeV
Theoretical Theoretical
(H.F.). €; (H.F.),
30352 0.13 421.2
1613-9 0.15 169.7
899.7 0.165 95.35
537.5 0-18 59.40
347.7 0.205 30.92
241.7 0.24 15.58
Table 5
¢ a; 0,0
(equation (equation
(13.5)) (13.1)
0.529 —4.353 7-354
(0.541) (—4.499)
0:648 —4.965 12.256
(0-668) (—5-163)
0.128 -1.771 1.412
0.284 —2-890 2-464
0-352  -3.353 3.285
0-402 —-3.640 3.974
0.356 —3.355 3.289
0-311 —3.059 2-728
0-379 —3.469 3.546
0.254 -2.781 2:313
0.224 ~2.583 2-071
0.281 —-2.954 2.561
0.265 -2.825 2.373
0.186 —-2.205 1.706
0.117 —1.557 1-304
0-085 —-1.156 1-156
0.066 —-0:920 1.095
0.119 —1.486 1.274
0.153 -1.783 1.419
0.223 —2.583 2-071
0.203 —2.352 1.834
0.183 —-2.153 1.665
0.186 —2.140 1.655
0.142 -1.711 1.380
0.119 —1.499 1.279
0-105 -1.320 1.209

OO0 OO
PR R O RN R, e R DR R R DN LN N =
NMOANNOORPNOANWAOAD R UMD PR ORNKDODO0LULRN

=2
E, =5.452 MeV
Theoretical
€ (H.F.),
010 16.21
0-12 8.00
0-14 4.36
0.16 2.89
0.18 209
0.20 1.59
qo,1 .’!«'010/X
{equation (equation
(13) (14)
1.520 0.0439
3.367 0.0427
0-093 0.0470
0.612 0-0447
1.150 0-0447
1.661 0.0448
1.153 0.0437
0.775 0.0441
1:338 0.0426
1.528 0.0464
1.217 0-0474
1.856 0.0456
1.607 0-0468
0.767 0.0475
0.306 0.0460
0.150 0.0453
0.089 0-0456
0.273 0:0440
0-433 0-0429
2.519 0.0483
2.071 0.0483
1.745 0.0465
1.726 0.0457
1.172 0.-0448
0-956 0-0454
0.795 0-0440
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therefore not unexpected that for lower / a fixed value of €, or of ¢, for all nuclei is
not available for close agreement with experimental values. One may, however, choose
to find the least variations of €, and of ¢, that may be acceptable. This has led us to
classify the nuclei in #wo separate groups, with Th and U isotopes in one group (which
may be thought to be in the border region of spherical shape and stable deformations
of nuclei) and the rest in the other group, each group being assigned a common
€, and e, respectively. As may be seen from column 8§ of table 6, it is interesting that
agreements are still quite close except for Cm isotopes. Now we present the calculated

values in the tables 1 to 6. Table 5 lists preliminary calculations for use in column 9,
table 6.

Table 6
Parent Alpha Empiri- Aver- Best-fit Theoretical (H.F.), Experi-
nucleus !  energy cal age  values Previous Present work with mental
: B2 € of theory € asin ¢ asin (H.F.),
(MeV) € (with col. 5 col, 6
static
potential)®
238Py 8 4.996 0-251} 0.37° 0.35 28100 9271 12766 12000
222Cm 8 5.596  0.271 0-39 33200 7966 5992 5100
220Th 6 4.436  0.197 —_ 0.165 9300 — 11482 13000
238Py 6 5.-442  0.257 0.25 706 350 695 640
238Py 6 5.195  0.251 0.28 630 348 348 360
2¢0Py 6 4.851  0.263 0.28 0.30 v 363 248 250
#2Cm 6 5.806  0.271 0.28 413 320 320 350
2#Cm 6 5.511  0.278 0-26 542 323 503 480
28Cf 6 6.462 (0.280) 0.29 336 308 252 280
228Th 4 5.208  0-195 0.24 26 14.6 14.6 13
230Th 4 4.471  0.197 0.22 50 13.6 19.3 20
230y 4 5.658  0.220 » 0.24 0.25 29.2 13.8 11-8 11
) 4 4.598  0.233 0-24 43.5 14.2 14.2 14
2387 4 4.020 0.233 0.20 73.2 14.5 331 30
238Py 4 5.352  0.251 0.16 170.3 114.4 114.4 116
22Cm 4 5.964 0.271 0.135 838.5 118.0 364.0 390
24Cm 4 5.658 0.278 » 0.16 0-12 759.0 122.0 936.0 830
2#48Cf 4 6.613 (0-280) 0.16 161.9 127.0 127.0 120
2%¢Fm 4 7.064 (0-288) 0.18 73-8 125.0 59.9 57
230Th 2 4.615  0-197 } 0.22 0-22 2.3 1.2 1.2 1.1
238 2 4.147  0.233 0.21 1.8 1.3 1.4 1.3
238Py 2 5.452  0.251 0.20 2.0 2.3 16 1.5
22Cm 2 6.066  0.271 0-20 2.1 2.3 1.6 1.7
2e0Cf 2 6.711  (0.280) > 0.175° 0-175 2-8 2.4 2.4 2.3
250Cf 2 5.980 (0.282) 0.16 3.4 2.3 31 2.9
25¢Fm 2 7.158 (0-288) 0.15 5.2 2.4 3.9 3.9

2 Shell-model calculations (Poggenburg et al. 1969).

» (H.F.)s for this isotope could not be calculated as reduced H.F. is not given.

¢ For (H.F.)s in column 8, one could get closer agreement than shown if the average €
is taken to be 0-378, i.e. up to the third decimal place; which is avoided (cf. § 5).
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5. Discussion

It may be seen that the formula (16) contains a centrifugal term quite different
from the ordinary one. It may also be pointed out that the matrices ¢; o are now
functions of /-dependent quantities and involve a negative exponent in the integrand.

In table 1, the values of R,, R and R, are given for all nuclei for which the
hindrance factors are calculated. The eccentricity o and effective deformation para-
meter & (cf. equation (7.1)) are given for each case in the last two columns.

In tables 2 and 3 we list the calculated values of the different potential functions
which contribute to the resultant barrier. Values are given to show how these different
functions, namely f(2) = (2¢P(2)—1), uo(r), ©,'O@r), Av;, uy(#)Ba, Wi(r)é, AK,
and AK, vary with » outward in the immediate neighbourhood of the nuclear
surface. In the tables and figures ¢ denotes (e,+(5/4m)' %) occurring in equa-
tion (8.4). The values listed in tables 2 and 3 are only for # angular momentum
! = 8 and 2 and for the two extreme cases, 2°%Pu and 2%*Fm. Since the results for
other / values and for other nuclei are exactly similar, it is considered sufficient for
reasons of space to present the values only for these two cases.

To visualize the variations with 7 of these potential functions we have plotted
them relating to 2%Pu in the figures 1 and 2.

|

-

Too—— \ ’ ulrd

iOL \ 1
|
Ilo_ ﬁ

ol

IOO"

w(r)B:

Potential functions (MeV)

f

0'01L 1 ! .
CH 00 I 70 %0 T0x10 -5
r (em)

Figure 1. Calculated potential functions in the close neighbourhood of the

nuclear surface are plotted against . The values refer to the ?**Pu nucleus and

are for « angular momentum ! = 8. The data are taken from table 2. The different

terms represent the electrostatic and the nonlocal potentials, uo(r) = 2(Z —2)e?/#;

u3(r)Bs Is its anisotropic part, v, Av, and Wa(r)é are defined in equations (2),
(8.3) and (8.5) respectively, where € denotes (e; + (5/4m)*/%,2).
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Now, for comparison purposes in figure 2, we have reinserted u,(r) as the reference
line. The curve wuy (in figure 2) shows the spherically symmetric potential
which is-actually effective in the neighbourhood of the nuclear surface and replaces
the traditional isotropic electrostatic potential u4(7) in this region. It is interesting

TN

25-

5+

Potential functions (MeV)

+
o
T

/
AK, 1
7

1 d 1 1 | |
90 100 1o 120 130 x 10-13
r {em)

Figure 2. The curves represent the different potential terms as in figure 1.

The terms AK; and AK; are given by equations (8.6) and (8.7) respec-

tively. The purely anisotropic parts of the nonlocal potential are denoted by

A®B) =T \(z, 6) 2F:(r) (see equations (8.4) and (8.1). The functions A4,

A and A correspond to the directions along the nuclear symmetry axis, at

right angles to it and along the direction with # = cos~(})1/? respectively.
Also see discussion in § 5.

to see from figure 2 how the purely anisotropic part of the barrier denoted in
the tables and the figures by 4, = 2%, x T |(r, 6) (cf. equations (8.1) and (8.4))
varies with 7 near the nuclear surface. To visualize how this anisotropic potential 4,
varies along different directions we have calculated A, along three principal directions,
namely, the direction parallel to the nuclear symmetry axis (i.e. for § = 0 or =), along
the normal direction at right angles to the symmetry axis (i.e. for # = =/2), and for the
direction with 8 = cos~}(3)*/2. The 4, function along these directions is denoted in
table 3 and in figure 2 respectively by 4, 4, and 4. Also, since 4, is primarily
negative, we have plotted — 4, to facilitate comparison with the other curves.

In table 4 the calculated values of (H.F.), for different o angular momenta and
only for the nucleus 2®Pu are shown for the given value of 8; and with varying ;.
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It is worth noticing how, for a given /, the theoretical (H.F.); changes with ¢;,. The
values are plotted in figure 3.

The curves in figure 3 clearly show that with appropriate values of ¢, it is possible
to get exact quantitative agreement between the calculated and the empirical values

T

)} —
(@]
ES
T
o~
n
o

o
w
T

O
~
T

Hindrance factor_(HFE

010 016 022 028 034
Nonlocality parameter ¢,

Figure 3. Calculated hindrance factors from equation (16) for different o
angular momenta and for the 2%8Pu nucleus are plotted for the given B; and as
functions of the nonlocal deformation parameter ;. Also see § 5.

of (H.F.), for all even / values in this case. Similar curves can, of course, be obtained
for other nuclei and the same holds good for all the cases to which the present con-
siderations apply. However, it should be mentioned that such agreements may require
the values of ¢; to be given up to the third or the fourth place of decimals. In view of
the approximations used and the fact that the data for 8, are known up to the second
place of decimals, it would be unrealistic to claim such accuracies in the values of e,
We therefore list in table 6 the chosen values of €, correct up to the second place of
decimals—except for three « groups (namely, [ = 2 for 2#6Cf, | = 4 for 2*2Cm and
! = 6.in 289Th) for which the calculated (H.F.), is very sensitive to €;; here we
have given the averages of their lower and upper limits of ¢,.

Furthermore it should be mentioned 'that for / = 8 we have given in columns 5
and 6 of table 5 the values of both (g, ag and the corresponding {,, ag, the latter being
shown in parentheses immediately below the respective {3 and ag. It is necessary
that, for / = 8, ¢, o and g, g be calculated as functions of g, @, and g, ag respectively,
strictly in accordance with equations (13.1) and (13.5). This is because (g differs
from {, and ag from a, considerably (« energy being normalized for {, and a, in
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accordance with the definition of (H.F.),). On the other hand, for [ = 6, {5, a4 are
nearly the same as {,, a, respectively for the same o energy E;. The differences
between {; and {, and those between a; and a, are still less for / < 6. Hence for
[ < 6 it would be sufficiently accurate to take the same values of {;, ¢, in calculating
both g, o and ¢,,;. This is, however, not desirable for / = 8 as in that case an avoidable
error of about 25% in the values of (H.F.), will occur. In this connection it may be
mentioned that the empirical values of (H.F.)g for 238Pu, and (H.F.)s and (H.F.), for
280Th, given by Perlman and Rasmussen (1957), differ considerably from the values
obtained later by Hanna (1959). We have given in table 6 the values of ¢; correspond-
ing to the later values shown in the column 10 of the table.

- Finally, calculations of (H.F.); are given for all relevant elements with
90 < Z < 100, but not for all isotopes—because this is unnecessary as the values of
(H.F.); are nearly the same for a given Z.

6. Conclusions

From the results given in table 6, one can summarize the trend of variations of
€; with /, 2 and 4 and one would come to the following conclusions.

(i) In the first place the nonlocality parameter ¢, as determined by the empirical
values of (H.F.),, is found to increase systematically with increasing [ if / > 4 (the
case of [ = 2 is discussed below). As seen from table 6, ¢, also varies with Z and A4.
But this latter variation being small, the ranges of ¢, for [ = 8, 6 and 4 remain discrete.
For example, ¢ is found to lie between 0-40 and 0-35, whereas €5 varies between 0-30
and 0-25 (except for the unusual case of ?°°Th with (H.F.)g = 13 000, for which
eg = 0-165), and the values of ¢, lie between 0-25 and 0-12. At the same time it is
also plausible that ¢, is more sensitive to / than to Z and A; the latter variations are
not only small but also of the same order as those of the other parameter, namely
Bs.0- It may also be noticed that, for / = 8 and 6, ¢, differs only in the second place of
decimals, whereas, for [ < 4, apparently there is wider variation of ¢; with Z and A
than normally expected.

(i) From the striking agreement obtained here between the theoretical and
empirical (H.F.), values, and also from the consideration that the nonlocal effects are
likely to be more predominant for higher values of /, one is led to conclude that the
values of €5 and €g given in table 6 are sufficiently accurate and the effects other than
those due to nonlocality would probably cause only minor changes of g and .

(iii) One may think that the o« groups with / = 4 would probably represent the
marginal case, so far as the relative importance of the effects of the momentum-
dependent potential and the other effects considered in earlier works are concerned.
This may be suggested because the values of ¢, as already mentioned, show some-
what wider variations with Z and A than normally expected from the findings for
€g and 5. Apparently this straggling of ¢, may be considered as indicative of the
existence of other influences not taken into account in the present theory. But on
a closer scrutiny the nuclei appear to separate out in two groups. For the first
group, with 90 < Z < 94, e, varies from 0-20 to 0-25, whereas for the second
group of nuclei, with 94 < Z < 100, ¢, ranges from 0-12 to 0-18 with the minimum
at Z = 96.

It is worth pointing out that « emissions with / = 8 and 6 are known to occur
(with one exception) only for the second group of nuclei, and for them ¢ lies in the
range 025 to 0-30. Thus the order of variation of ¢, with Z and 4 is the
same as that for e;. Besides, the range of ¢, (i.e. from 0-12 to 0-18) is lower
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than that of e; by about as much as the latter is below the range of e5. Hence the
values of ¢, given in table 6 are consistent. It is, therefore, not possible at present
to say to what extent the effects,,other than those due to nonlocality, would be sig-
nificant in controlling the hindrance factors for transitions with « angular momentum
[ =4

(iv) For ! = 2, however, there are unmistakable indications of the existence of
various influences controlling the x decay, because one finds from table 6 that ¢,
not only shows wider variations with Z and A4 but also turns out to be in general
higher than what would be expected from the trend of variations of ¢; with /, Z and 4.
As stated in the previous subsection (iii), the values of ¢, lie in the range from 0-12 to
0+18 and hence €, should not be higher than 0-12. On the other hand e, is found to
be in the range 0-15 to 0-22. Itis also to be noticed that, for almost all nuclei, e; > €.
It therefore appears that for alpha angular momentum / = 2 there is some mixing of
all the different influences, and the fact that the values of ¢; come out to be higher
than expected may be interpreted as a sort of compensation for the inaccuracies in
the values of e; due to neglect of the other effects (cf. § 1) in the present discussion.
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