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J. Phys. A :  Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

A model of nonlocal potential and alpha decay of 
deformed even nuclei 

M. L. CHAUDHURY 
Indian School of &lines, Dhanbad, Bihar, India 
MS. received 28th September 1970, in final fo rm 10th December 1970 

Abstract. The problem of U decay of deformed even nuclei is treated here by 
assuming the barrier to be the usual anisotropic electrostatic potential superim- 
posed by a nonlocal &-nuclear potential. The method employed is similar to that 
developed in a recently published work on x angular distributions. Accordingly, 
the electrostatic potential is, for simplicity, described by the usual quadrupole 
deformation parameter p z , o ,  while the nonlocal part is taken for the same 
reason to be spheroidal, described by a deformation parameter E ! .  The latter 
potential being momentum-dependent, may naturally take different values 
for different CI angular momenta 1. Furthermore, the barrier penetration effects 
are taken to be the main factors governing hindrances to the excited state transi- 
tions. With these assumptions a formula for hindrance factor, (H.F.)l, is 
derived. 

Then from straightforward calculations, and with a single value of E ,  for 
different nuclei (fiz,, being known from experiments), the values of (H.F.), 
are found to be within fijly per cent of the empirical values, whereas the values 
from the shell-model theory or from a purely Coulomb or static barrier hypo- 
thesis show large discrepancies. Similarly, for I < 6, overall agreement for 
an average E !  is better than obtained previously. On the other hand, it is 
remarkable that for the best-fit values of an E! varying slightly with nuclear mass 
A and charge 2 (which appear not unreasonable by analogy with the similar 
variations of p2,,)  one obtains exact agreement with (within ten per cent) all 
the empirical (H.F.)! values to be discussed here. 

1. Introduction 
The intensities of x fine structures for heavy elements, when calculated on the basis 

of the simple barrier penetration theory, are found to be systematically greater than 
the observed values by very large factors (up to 15 000) for higher E angular momenta I 
(cf. Perlman and Rasmussen 1957). After the discovery of the rotational level struc- 
tures in the daughter nucleus (Bohr and Mottelson 1953, Perlman and Asaro 1954) 
the theories of U decay of deformed nuclei were developed in a number of rapidly 
succeeding papers (cf. Hanna 1959) by taking into account various effects of deforma- 
tions of the nuclear surface as \.iell as of x angular momentum 1. I t  was then generally 
concluded that if the barrier is assumed to be purely Coulombic and if the nucleus 
is axially symmetric, and also if the x wavefunction on the nuclear surface is a constant, 
then the agreement between the theory and experiment is not satisfactory. For ex- 
ample, in his cmprehensive treatment, Froman (195’7) has shown that with chosen 
values of ,8,,,--which are, however, different from empirical values-the variational 
character of bl with 2 is not theoretically reproduced. Gol’din et al. (1958) have 
included higher multipole moments in their theory and also discussed the difficulties 
involved in some of these methods. 

On the other hand, Rostovskii (1961) has discussed the problem by assuming the 
nucleus to be nonaxial (cf. Davydov and Filipov 1958), a treatment unlike that in 
the above papers. 
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But he finds that with the chosen values of the parameter y, which measures devia- 
tions from axial symmetry, the calculated intensities still largely differ from the 
experimental data except for the transitions to 2+ states. 

Riore recently an extensive study of this problem has been made by hlang 
(1957), Mang and Rasmussen (1962) and Poggenburg et al. (1969). Their basic 
formulation is to calculate the x cluster probability, taken to be the main factors 
governing the hindrances to excited states, in terms of the shell-model product wave- 
functions of the constituent nucleons. A simpler treatment which also has a bearing 
on the alpha formation and nuclear shell model was given by Brussard and Tolhoek 
(1958). -4s for the potential barrier the Coulomb potential was superimposed by an 
external a-nuclear potential. But, as discussed elsewhere (and below), there are 
reasons to believe that the said a-nuclear potential is nonlocal in character. In  
Mang’s theory this has been assumed to be static. It must be stated that there are 
no indications from the shell-model theory to support a static a-nuclear potential. 
Also, a static barrier with shell-model effects is inadequate, as may be seen from 
columns 7 and 10 of table 6. Wilkinson (1961) has questioned the shell-model theory 
taking the calculations by Harada (1961) to show that the calculated values are too low 
by factors of lo2 to lo4, depending on the detailed assumptions made. Besides, it has 
also been noted that the conclusions of the shell-model theory are critically depeizdent 
on the choices of the potential barrier. Hence the need arises for reviewing the 
situation. 

An alternative approach to the a decay problem would therefore be to assume 
that the a cluster probability is not largely dependent on the a angular momentum. 
This assumption is not new. The  earliest work in which the a decay reduced widths 
a,* for excited states are taken to be the same as for the ground state transitions is 
the theory by Bethe (1937). In  many subsequent works this valuable concept was 
used (cf. the review article by Rasmussen 1965). Obviously if we assume N So2 
then the explanation of the hindrance factors will have to be sought in terms of the 
variations of the only other factor in the formula for the decay constant A-namely 
the penetrability factor P. I n  calculating P the assumption that a purely electrostatic 
barrier is an oversimplification and that this should be superimposed by an external 
%-nuclear potential is now established (cf. any recent paper on a decay). But certain 
points about the character of this a-nuclear interaction, although mentioned more 
than once in our previous papers, may be recalled. I t  has been known for a long 
time (Van Vleck 1935, Fay 1936, Bardeen 1937, and see the review article by 
Glassgold 1958) that the average potential felt by a nucleon is dependent on its 
velocity. Thus the statistical nuclear model with exchange forces gives an interaction 
between a nucleon and its neighbours of a nonlocal type in coordinate space. The 
energy dependence of the nuclear interaction is also evidenced from a number of 
experiments (cf. Weisskopf 1937) and from the observed variations of the optical 
parameters, which are however not uniquely known, in the CI scattering experiments 
(cf. for example Igo and Thaler 1957, El Nadi and Riad 1965, TvIcFadden and Satchler 
1966 and Thompson et al. 1967). 

A phenomenological interaction of nonlocal type has been used by Frahn (1956) 
and other authors to account for the modified propagation character of nucleons 
within nuclear matter and the said velocity dependence of the optical parameters in 
a-nuclear scattering. An equivalent interpretation due to Wheeler (1936) is to assign 
a reduced effective mass to the interacting nucleon; he used this method to account 
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for nuclear saturation. The nucleon-nucleon interaction has also been discussed, for 
example, by Levy (19.52) and by Levy and Marshak (1955), in terms of a nonlocal 
operator in the meson theory of nuclear forces. 

In  the present context we are not directly concerned with the question as to the 
equivalence of the above formally different approaches to the many-body character 
of the nuclear interaction. What we intended to emphasize is that if the interaction 
between a nucleon and its close neighbours is not independent of the state of the 
interacting system then this should be true in the a decay process also. Of course, 
if the effect of such a state-dependent a-nuclear potential is not negligible then this 
must be capable of explaining some of the observed characteristics of x decay. IiIost 
important of them is the finding that the hindrances to the excited state transitions 
increase systematically with increasing y. angular momentum I .  We shall show here 
that this is a natural consequence of the I dependence of the said nonlocal barrier 
penetration probability. 

From the above considerations it was proposed(Chaudhury 1960) that the nucleons 
in the two separated bodies (namely, the z particle and the daughter nucleus) interact 
in a way which may be represented by an overall nonlocal a-nuclear potential. The 
justification for an overall potential is prot ided by the considerations based mainly on 
the works of Brueclrner and Levinson (1954, 1955, also cf. Bethe 1956) on the many- 
body problem of nuclear structure. 

One significant difference between the scattering problem and the il decay process 
is that the parameters of the optical potential chosen to fit the scattering data involve 
bombarding energies quite high compared with the a decay energy. Also, the motion 
of a nucleon in the nuclear matter is different from that of an a particle in the peri- 
pheral region of the daughter nucleus. Therefore, in choosing the appropriate 
form of the nonlocal interaction kernel, one has to depend on the trial method, 
Initially we assumed this to be the same as that used in the effective mass approxima- 
tion. This form of nonlocality amounts to replacing the reduced mass of the CI particle 
by the variable effective mass p ( ~ ) ,  in the Gamow factor, which, however, is found to 
lead to too large a change in the barrier penetration probability (cf. Chaudhury 1963). I t  
thus appeared that the momentum dependence of the x-nuclear potential IT as different 
from that associated with the effective mass approximation. This point was also 
noted by other authors (W. E. Frahn private communication, see also Preston 1963). 
Hence in a recent paper (Chaudhury 1966) a simpler isotropic nonlocal potential 
was defined in terms of which it was possible to explain (agreements being in most 
cases within 25 per cent of the observed values) the relative intensities of s( spectra, 
particularly the parity-unfavoured transitions (not previously explained) for spherical 
nuclei with charge number Z < 92 and neutron number < 138. Xlore recently 
this spherically symmetric nonlocal potential was suitably extended (Chaudhur; 
1970 to be referred to as I) to take into account the effects of deformations of the 
nuclear surface, and is found useful in interpreting the observed anisotropy of the x 
emissions from oriented "'Np nuclei. In  view of these successes, and considering the 
experimental basis, it is reasonable that the problem of a decay of deformed nuclei in 
the region A > 226 and N > 138 be treated along these lines. We shall, however, 
restrict ourselves here to the even parity il transitions in the even-even nuclei, to avoid 
further complications. 

In  4 2 we set up relevant wave equations by taking into account the above con- 
siderations regarding the potential barrier. For simplicity, we confine our attention 
to quadrupole shapes of the nuclear surface so that the electrostatic part is described by 
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the parameter p2,0. T o  be consistent, the nonlocal part of the barrier will be des- 
cribed by a spheroidal deformation parameter, say e l .  I n  our calculations, the values 
of /3z,o will be taken from the list of values by Bell et al. (1960), from the measurements 
of half-lives of excited states in differznt nuclei. We might as well take the somewhat 
different values of /3z,o given by Rester et al. (1961) obtained from the spectra of 
internal conversion electrons from the Coulomb excitations of heavy elements. But 
the data available by the latter method are limited. Again, since the a-nuclear 
potential itself is momentum-dependent, its deformation parameter c l  may naturally 
take different values for different 2. All the other parameters involved are known 
fairly accurately either from previous experiments or from theoretical considera- 
tions (see 4 4). Furthermore, as already mentioned, the main factors governing 
hindrances to the excited state transitions will be discussed here in terms of the 
above-mentioned barrier penetration probability, and it appears that for the present 
problem the assumption of large variations with 1 of the a cluster probability is not 
necessary.? 

Approximate solutions of the wave equations are obtained by following a 
three-dimensional WKB method due to Christy (1955) and adapted to the present 
problem, In  this way the desired formula for the cc decay constant and hence the 
formula for the hindrance factor is obtained. In  the next section the results of cal- 
culations are presented for the average c l ,  as well as for its best-fit values, and 
compared with the experimental data. 

From straightforward calculations it is found that with a single value of E, for 
different nuclei the values of (H.F.), are within f i f ty p e ~  cent of the empirical values, 
whereas the shell-model theory and calculations on the basis of a static or the purely 
Coulomb barrier hypothesis differ largely from the empirical values. For 1 = 6 
and with a single value of E @  for different nuclei, the same order of agreements are 
obtained except for the unusual case of 230Th (with (H.F.), = 13 000) for which e6 
is to be chosen somewhat smaller. For 1 < 4, the effects of momentum dependence 
of the barrier are not expected to be as predominant and the dependence of c l  on A 
and 2 is found to be more pronounced. It is however remarkable that for the best- 
fit values of an el  varying slightly with A and 2 (which is not unreasonable, by analogy 
with the similar variations of /3z,o) one obtains exact agreements with (within ten per 
cent) all the empirical (H.F.), values to be discussed here. 

Nevertheless, it should not be forgotten that there are other important problems, 
such as the effects of x cluster probability, multipole moments and those due to 
nonaxial shapes of the nuclei. However, the barrier effects, particularly for higher 
a angular momentum I ,  are clearly predominant; also, if one intends to study the 
nonlocal effects, it is necessary to restrict the number of unknown parameters to a 
minimum and hence we do not consider them here. 

2. Wave equations and their solutions 
The solutions of the Schrodinger equation for the deformed nonlocal barrier 

discussed above are given in I. We shall here briefly indicate the method of arriving 
at these solutions. 

It has been shown in I that the equation for the radial part of the partial a wave 

+ ( r )  = r - 'u l (~)Yl ,n(~ ,  P) 
-f This condition was also found valid for the cc decay of spherical nuclei (cf. the relation 

F ,  2: Fo in Chaudhury 1966 p. 184). 
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for the isotropic barrier takes the form 

where primes denote differentiation with respect to Y ,  ,U is the reduced mass, 
u0(r)  = 2(2-2)e2/7 (2 being the charge number of the parent nucleus), e is the 
electronic charge, and the isotropic nonlocal energy is of the general form - 

T J L ( y Y )  = v ( Y ) p p ( Y )  (2) 
where V(Y) is the static part assumed to be given by the optical model potential; 
the purely nonlocal part of order n (shown as superscript) is given by 

where z = ( r -  RZ,)/b, Ri is the inner turning point and b is the range of nonlocality, 
and 

g(O)(z) = +(1+ exp( - 9) dz} J 
g(l)(z) = +{ 1 - 2 exp( - zz)z dz} 

j exp( - X2)z2 dx}. (2.2) g‘2’(z) = 4(1 + 4T-1 ;2  

The right hand side of equation (1) is small-as g“’(z) vanishes except at the 
immediate neighbourhood of Ri-and will be ignored. 

Now for deformed nuclei both u0(r)  and vl(’)(r) should be replaced by the cor- 
responding angle-dependent terms U( r ’ )  and T J ~ ( ~ ) (  r ’ ) ,  referred to the body-fixed 
system of coordinates r’( = r,  8’, p’) with the same origin as for the laboratory system 
of coordinates, Y (  = r, 8, p). As is well-known for quadrupole deformations, 

and R,( = ? p O ( A  -4)ll3 x 
is connected to the spheroidal surface R( 0’) by the relation 

cm) is the radius of a hypothetical nuclear sphere and 

R(0’) = R,{1 +P2,0 Y2,0(0’)}. (3.2) 
On the other hand, for the axially symmetric nonlocal potential we find that (cf. 
paper 1) 

tpyq = Z.L(yY) - qyp)vyr)  + Yv(Y) p l ( n ) p z , o ( e ’ )  

+ ( ~ / S T ) ~ ~ ’ { Y ~ ~ ( ~ ) ( P )  V’(r) + y V ( r )  Pl(n)’(~)} (4) 
where P = ( E ,  + (&)14L2}. Collecting these terms, the equation for the deformed 
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barrier corresponding to equation (1) becomes 

Now the procedure to solve equation ( 5 )  differs significantly from that generally 
used (cf. Davidson 1965) in the case of the electrostatic barrier for which there is no 
actual inner turning point. On the other hand, the existence of such a turning point 
requires that the extrema1 equation should be taken as 

where P’ is a point on the spheroidal nuclear surface I?(@’) (cf. equation (3.2)) and P 
is somewhere within the barrier region. In  the present context the lower limit in 
equation (6) should nowhere be less than the inner turning point (which in three 
dimensions will now be denoted as &(e’) instead of I?,-cf. below equation (2.1)). 
This is because F12 in the integrals changes from a positive value outside Ri(O’) to a 
negative value inside it, which is not allowed. 

Now, eccentricity U being small, it can easily be shown that 

Rip’) = I?,{(I - i u 2 )  + ~ u 2 ~ z , o ( c o s  e’)}. (7) 
Since the resultant deformation depends now on both /3z,o and e l ,  we introduce for 
convenience, by analogy with equation (3.2), an ‘effective’ deformation parameter 
6.) such that 

R i p / )  = R { I  + 5 yz,o(e’)). (7.1) 
T o  our approximation, retaining terms up to the order b2 and e l 2 ,  we get from equa- 

tion ( 5 , l ) :  

where 
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with ? = Y X  1013/0*574. K o w  the expansion coefficients in the state vector depend 
on a number of quantum numbers in addition to 1 and, instead of‘the U , ( r )  of equa- 
tion (l), let this function be denoted in the body-fixed and space-fixed systems of 
coordinates by S ; : m , K f ( ~ )  and by B{;v,K, . (~)  respectively. The subscripts i and f 
indicate the initial and final states, I ,  m and v denote the CI angular momentum and its 
projections on the z axis (lab. system) and on the nuclear axis of symmetry, j ,  and 
K are the total angular momentum of the nucleus and its projections on the two axes 
respectively. By using the rotation matrix the connection between S and B is 05- 
tainable as 

(9) 
3’1 

S l , ? n , K f ( Y )  = 2 ( -  1 ) 3 t - 3 i + v ( j l ,  I, K f + V ,  - v l L ,  K f ) & f Y , K * ( ~ ) .  
V 

S o w  we apply the mean-value theorem in evaluating the integral 

% IR’ Y E ( y )  dr = (1 -K(C’)}l 1 ( U ~ ( Y )  - El}1’2 dr (10) 

(10.1) 

Ri(0’) Ri (B’ j  
where 

K(5’) = [{.1‘”(1;’) + ~7J,(1;’))/{uo(5’) - 4 1 1  
with RI(&) < 5‘ < R,. Since the minimum of &(e’) and R,  are nearly the same, 
for calculation purposes we can set K( c’) = K(R,) in equation (10.1) without appreci- 
able error. 

Kow, using equations (lo), (10.1) and (8) in ( S ) ,  and after simplification, we obtain 
the solution 

with the boundary condition that the x wave function + o ( O ,  p) on the nuclear surface 
is expanded as 

# O ( B ,  PI = c 2 hL,,v,yE,,v,(e, P) (12) 
E’ >’ 

where the modified matrix 

and 
(13.1) 

where 

(13.3) 

(13.4) 

(13.5) 

x = 2(2-2)e2(2~)1’2/~E,1!2 k = (2pE,)1’2/k (13.6) 
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and K ,  = K(Ra). Now U l  occurring in equation (11) is obtained by solving equa- 
tion (1) by the usual method of approximation as 

where 
yo  = (( Z - 2)e2/E,1'2} 

and 
(14.1) 

(14.2) 

where R ,  is the outer turning point, that is, 2(2-2)e2/E, .  

3. Alpha-decay constant 

from the initial statej,, K ,  to the statej,, Kf, is, by definition, 
The U. decay probability, with angular momentum Z and for the transition 

where the S function is given by equations (9) and (11). 
From what has been said in 5 1 about the U. cluster probability we can set 

h,.,,, .g h,,,  in equation (11) and also v = 0 for even-even nuclear transitions. Hence, 
neglecting higher order terms, the formula for the hindrance factor with x energy 
normalized for A,,, is finally obtained as 

In  the next section we give the results of calculations of hindrance factors from 
equation (16). Here we may mention that equation (16) contains the centrifugal term 
and q E , O ,  both of which involve exponential functions of Z-dependent nonlocal para- 
meters. It is therefore expected that the results are quite sensitive to the deformation 
parameter E,, particularly in the cases for large values of 1 (see figure 3). 

4. Results 
T o  evaluate hindrance factors from equation (16) it may be seen that the integrals 

I ,  occurring in equation (14.2) and 9, and 9, (cf. equations (13.3) and (13.4)) 
which occur in I r  and a,  are not analytically known. We therefore calculate these 
integrals by taking advantage of a computer and by using a modified Simpson's rule 
discussed in I. In  the present calculations the number of strips of width d for the 
entire integral range R, to Ro is taken to be 100. On the other hand, for the quantities 
g(O)(z), that is, Erf(z) and defined in equations (2.2) and (2.1) and involved in the 
integrals I,, 3, and J J ~ ,  .one obtains sufficiently accurate values with only 60 strips 
for every value of z .  

T o w  of the different parameters involved-namely, the range of nonlocality b,  
the hypothetical nuclear radius Rc (cf. equation (3.2)), the inner turning point R,(d') 
(equation (7.1)), the eccentricity a (cf. below equation (7) ) ,  the outer turning point R,, 
the quadrupole deformation parameter Pz and the nonlocality parameter E,-only 
the last one is unknown. The other parameters are known fairly accurately either 
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from experiments or from theoretical considerations. In  I we found that the 
nonlocality b is in the range 0.5 6 b < 0.9 fm and the penetration factor is not very 
sensitive to the values of b within this range. We shall, therefore, take b = 0.7  fm. 
In  the definition of R,( = y o  x ( A  - 4)’ x cm) there is some ambiguity in the 
choice of y o .  In  3: decay theories yo  is generally indicated as y o  2: 1.44, whereas 
smaller values are obtained from other sources (cf. Hofstadter 1956). In  the present 
calculations it is found that y o  may be taken as small as 1-20. Next, the inner turning 
point I?,(#’) is obtained for different 8’ by solving the equation F12 = 0 (see equa- 
tion (8)) by the iterative method and by neglecting small terms such as IV2(~)(5/87r)~12 
and those involving products of pzb2 and This makes the values of R,(B’) slightly 
different from the exact values. But it can be shown that the difference is not more 
than one strip-width d and may be ignored. We thus obtain the values of Rl(8’) 
for 8’ = 0 or T ,   COS-^(^/^)^^^ and for 8’ = ~ 1 2 ,  giving R,, R and R,,, respectively. 

The eccentricity U is then easily obtained from R,  and I?,in. It map be mentioned 
that the empirical hindrance factors are obtained by taking the nuclear radius for the 
ground state transitions to be the same as for the excited states. Hence to be con- 
sistent we have calculated Rl(8’) by setting 1 = 0 for the different CI energies E ,  in a 
fine-structure pattern for a given nucleus. The  outer turning point R, is of course 
given by 2(2-2)e2/E,. Furthermore, as already mentioned in 5 1, Pz will be taken 
here from the list of empirical values (Bell e t  al. 1960) except for 246Cf, 250Cf and 

Table 1 

Parent cc-particle 
nucleus energy, ( L )  

EL (MeV) 

4.996 (8) 

5.352 (4) 
5.195 (6) 

5.452 (2) 
5.596 (8) 
5,806 (6) 
5.964 (4) 
6.066 (2) 
4.436 (6) 

4,615 (2) 

4.851 (6) 
5.511 (6) 

6.462 (6) 
6.613 (4) 
6.711 (2) 

4.471 (4) 

5.442 (6) 

5.658 (4) 

5.208 (4) 
5.658 (4) 
4.598 (4) 
4.020 (4) 
4.147 (2) 
5.980 (2) 
7.064 (4) 
7458 (2) 

Empiri- Kon- Inner turning point Eccen- 
cal local RI(@ (fm) tricity 
P 2  

0.251 

0.271 

0.197 

0.257 
0.263 
0.278 

(0.280) 

0.195 
0.220 
0.233 
0.233 

(0 * 282) 
(0.288) 

para- 
meter 

€ 1  

0,350 
0,280 
0460 
0.200 
0.390 
0.280 
0.135 
0.200 
0.165 
0.220 
0.220 
0.250 
0,300 
0.260 
0.120 
0.290 
0.160 
0.175 
0.240 
0.250 
0.240 
0.200 
0.210 
0460  
0.180 
0.150 

RS 

9.187 
9,154 
9.095 
9.118 
9.245 
9.196 
9.123 
9.160 
9,029 
9.059 
9,063 
9.120 
9477 
9,194 
9.131 
9 * 240 
9.179 
9,190 
9.067 
9,086 
9,091 
9,101 
9,110 
9.203 
9.268 
9.254 

- 
R R m i n  

t 

9.059 8.974 
9,064 9.006 
9.069 9.051 
9.072 9.041 
9.099 9.005 
9.105 9.055 
9.109 9.102 
9,112 9.090 
8.984 8,965 
8,985 8.948 
8.989 8.953 
9.048 9.002 
9,078 9.013 
9,119 9.077 
9,124 9.119 
9,151 9.094 
9.156 9442 
9,159 9.140 
8.989 8.939 
9,002 8.958 
9.019 8.973 
9.049 9.016 
9.053 9,016 
9.183 9.169 
9,236 9.217 
9.238 9.229 

G 
(equa- 
ion (7)) 

0.214 
0479  
0.098 
0.130 
0.226 
0,174 
0,067 
0423 
0,119 
0.156 
0,156 
0.161 
0.188 
0.159 
0.050 
0.177 
0.089 
0.104 
0.167 
0.167 
0.161 
0.137 
0,143 
0.086 
0.104 
0.073 

Effective 
deformation 

a 
(equation 

- 

(7.1)) 

0.0157 
0.0045 
0.0081 
0.0254 
0.0157 
0.0023 
0.0080 
0.0079 
0.0130 
0.0130 
0.0126 
0.0172 
0,0129 
0.0013 
0,0153 
0.0041 

0.0224 

0.0054 
0.0137 
0.0148 
0-0128 
0.0092 
0~0100 
0.0034 
0.0055 
0.0027 
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254Fm for which p2 are not known. We have chosen the values shown in parentheses 
in column 3 of table 5 from the general trend in the variation of p2 in this region. 
We are thus left with only one unknown parameter E!. In  column 9 of table 6 we give 
the calculated (H.F.)l values with the best fit values of e l .  In order to show that the 
results are not particularly dependent on the individual cariations of E, with A and 2, 

9.187 
. 9,608 

10.030 
23sPu 10.451 

(I = 8) 10.873 
11.294 
12,558 
13.823 

9 5 254 
9.545 

254Fm 10.125 
9,835 

( I  = 2) 10.416 
10.706 
11,578 
12.449 

Parent r 

0.182 
0.785 
1.387 
1 *989 
2.591 
3.193 
4.999 
6.806 

0.0045 
0.2544 
0,7212 
0,9518 
0.9968 
1 .oooo 
- 
- 

0,023 8.84 x 10- 
0.438 0.0563 
0.853 0.3069 
1.267 0.6399 
1.682 0.8704 
2,097 0,9675 
3.342 1*0000 
4.587 - 

28.839 
27.574 
26.41 5 
25.350 
24.367 
23.457 
21 -096 
19,183 

- 6  30.497 
29,569 
28.695 
27.873 
27,095 
26.360 
24.376 
22.670 

nucleus cm) (MeV) 
(equation 

(8.2)) 

9.187 
9.608 

10.030 
2 3 8 P ~  10.451 

( I  = 8) 10.873 
11.294 
12.558 
13.823 

9.254 
9.545 
9.835 

234Fm 10.125 
( I  = 2) 10.416 

10.706 
11.578 
12.449 

(MeV) 
(equa- 
tion 

(3.1)) 

2,846 
2.487 
2.187 
1,933 
1.717 
1.531 
1.114 
0,835 

3.554 
3.239 
2.961 
2.713 
2.492 
2.295 
1.814 
1.460 

5.914 
10.428 
15.808 
19,690 
21.577 
22.115 
20.959 
19.159 

7.562 
9.189 

12.741 
16.485 
19.544 
21 a600 
23.310 
22.440 

(MeV) 
(equation 

(8.6)) 

-12,507 
- 4.570 

5.948 

4.735 
7,352 

2.537 
0.298 
0.032 

- 0.537 
- 4.266 
- 1.420 

1,865 
3.187 
2.877 
0.869 
0.197 

(MeV) 
(equation 

(8 .7))  

0.205 
5.413 
4.115 
0.690 
0.040 
0.001 
0 * 000 
0.000 

0 * 000 
0,624 
2.221 
1,981 
0.793 
0.177 
0.000 
0.000 

(MeV) 
(equa- 
tion 
(2)) 

22.306 
15.265 
8.379 
4448  
1.999 
0.959 
0.106 
0.012 

22.678 
19.477 
14.217 
9.328 
5,791 
3.517 
0.772 
0.169 

(MeV) 
(equa- 
tion 

(8.3)) 

0.618 
1.882 
2.226 
1,508 
0.793 
0.384 
0.039 
0 * 004 

0.257 
0.903 
1.737 
2.060 
1,765 
1.242 
0.290 
0.059 

-All AL 
(NeV) (MeV) 

(see 5) 

17.770 12.998 
35.605 24,284 
32.574 21 ~ 1 6 3  
21,880 13.662 
11440 6.953 

5.260 3,320 
0.055 1.130 

-0.440 -0.209 

1.255 0.887 
10,248 6.166 
13.812 8,125 
12.898 7.445 
10.034 5 e703 
6.718 3.797 
0 9 949 0.578 
0.439 -0-196 

W 2 ( Y ) E  
(MeV) 
(equa- 
tion 
(8.5)) 

48.088 
75.770 
56.990 
31.819 
16.155 
8.065 
0.995 
0.120 

6.358 
25.480 
29,800 
24.333 
16.738 
10.708 
2.561 
0.595 

- 
A 

(MeV) 

2,742 
4.321 
3.251 
1.815 
0.921 
0.460 
0.057 
0.007 

0.173 
0.695 
0.813 
0.664 
0,457 
0.292 
0.070 
0.016 



338 M ,  L. ChaudhuTy 

it is desirable that we should give, side by side, the corresponding oalues, particularly of 
(H.F.), and (H.F.)6, .for a j x e d  c8 and E~ respectively (excepting 230Th, cf. column 8 
table 6 ) .  The results clearly show that the probable dependence of c L  on A and 2, 
for large 1, is largely masked by the dependence on alpha angular momentum. It is 

Table 4 

1 = 8  1 = 6  1 = 4  
E,  = 5.195 MeV E ,  = 4.996 MeV E ,  = 5,352 MeV 

Nonlocal 
parameter 

€ 1  

0.26 
0.305 
0.32 
0.335 
0.35 
0.38 

Parent 
nucleus 

238Pu 

242Cm 

23 OTh 
236Pu 
238Pu 
24OPu 
z42Cm 
244Cm 
246Cf 
zzsTh 
2 3  OTh 
230LT 
2 3 4 U  

2 3 8 u  

238Pu 
242Cm 
244Cm 
246Cf 
254Fm 
230Th 
2 3 8 ~ ~  

23SPU 
242Cm 
24"f 
25OCf 
254Fm 

1 

S 

8 

6 
6 
6 
6 
6 
6 
6 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
2 
2 
2 
2 
2 
2 
2 

Theoretical 
hindrance 
(H.F.1, 

(equation 
(16)) 

99679 
31091 
22679 
17024 
12766 
8066 

Empiri- 
cal 
P z  

0.251 

0.271 

0,197 
0.257 
0.251 
0.263 
0.271 
0.278 

(0.2 80) 
0.195 
0,197 
0.220 
0.233 
0.233 
0.251 
0,271 
0.278 

(0.280) 
(0.288) 
0.197 
0.233 
0.251 
0.271 

(0.280) 
(0.282) 
(0.288) 

€ 1  

0.20 
0.22 
0.24 
0.26 
0.28 
0.30 

€ 1  

0-35' 

0.39 

0.165 
0.25 
0.28 
0.30 
0.28 
0.26 
0.29 
0.24 
0.22 
0.25 
0.24 
0.20 
0.16 
0.135 
0.12 
0.16 
0.18 
0.22 
0.21 
0.20 
0.20 
0.175 
0.16 
0.15 

Theoretical 

3052 0-13 
1613.9 0.15 
899.7 0.165 
537.5 0.18 
347.7 0.205 
241.7 0.24 

Table 5 

i l  

(13.5)) 
(equation 

0.529 
(0.541) 
0 * 648 

(0.66 8) 
0.128 
0.284 
0.352 
0.402 
0.356 
0.311 
0.379 
0,254 
0.224 
0,281 

0.186 
0,117 

0.265 

0.085 
0.066 
0.119 
0.153 
0.223 
0.203 
0.183 
0.186 
0.142 
0.119 
0.1 05 

a1 
(equation 

(13.1)) 
-4.355 

(-4.499) 
-4.965 

(-5.165) 
-1.771 
-2.890 
-3.353 
-3.640 
-3.355 
-3.059 
-3.469 
-2,781 
-2,583 
-2.954 
-2,825 
- 2.205 
-1.557 
-1,156 
-0,920 
- 1.486 
-1-783 
-2.583 
-2.352 
-2.153 
-2.140 
-1.711 
- 1.499 
-1.320 

Theoretical 

(H.F.11 

421.3. 
169.7 
95.35 
59.40 
30.92 
1 5 - 5 8  

Q 0 , o  

7.354 

12.256 

1,412 
2.464 
3.285 
3.974. 
3,289 
2.728 
3.546 
2,313 
2.071 
2.561 
2.373 
1.706 
1.304 
1.156 
1.095 
1.274 
1.419 
2.071 
1-834 
1-665 
1.655 
1-380 
1 e279 
1,209 

1 = 2  
El = 5.452 MeV 

Theoretical 

€ 1  

0.10 
0.12 
0.14 
0.16 
0.18 
0.20 

Q O , !  

:equation 

1.520 
(13)) 

3.367 

0.095 
0.612 
1 .I50 
1,661 
1.153 
0.775 
1 :338 
1.528 
1.217 
1.856 
1 e607 
0.767 
0.306 
0.150 
0.089 
0.273 
0.433 
2.519 
2.071 
1 e745 
1.726 
1.172 
0.956 
0.795 

.(H.F.)! 

16.21 
8.00 
4.36 
2.89 
2.09 
1.59 

YOIOiX 
(equation 

(14)) 
0.0439 

0.0427 

0.0470 
0.0447 
0.0447 
0.0448 
0.0437 
0,0441 
0.0426 
0.0464 
0.0474 
0,0456 
0.0468 
0.0475 
0.0460 
0.0453 
0.0456 
0.0440 
0.0429 
0,0483 
0.0483 
0,0465 
0.0457 
0.0448 
0.0454 
0.0440 



table 6. 

Parent 
nucleus 1 

laaPu 8 
242Cm 8 

230Th 6 
23@Pu 6 
238Pu 6 
240Pu 6 
a4zCm 6 
244Cm 6 
z,leCf 6 

22aTh 4 
230Th 4 
230U 4 
234u 4 
2 3 8 U  4 

238Pu 4 
242Cm 4 
244Cm 4 
2 4 T f  4 
254Fm 4 

230Th 2 
2 3 8 u  2 

238Pu 2 
z42Cm 2 
2 4 T f  2 
2jOCf 2 
254Fm 2 
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therefore not unexpected that for lower 1 afixed value of e4 or of c2 for all nuclei is 
not available for close agreement with experimental values. One may, however, choose 
to find the least variations of e4 and of e2 that may be acceptable. This has led us to 
classify the nuclei in two separate groups, with T h  and U isotopes in one group (which 
may be thought to be in the border region of spherical shape and stable deformations 
of nuclei) and the rest in the other group, each group being assigned a common 
e4 and c2 respectively. ils may be seen from column 8 of table 6, it is interesting that 
agreements are still quite close except for Cm isotopes. Now we present the calculated 
values in the tables 1 to 6. Table 5 lists preliminary calculations for use in column 9, 

Table 6 

Alpha Empiri- Aver- Best-fit Theoretical (H.F.)r 
energy cal age values Previous Present work with 

El- P z  € 1  of theory as in 
(MeV) 

4.996 
5.596 

4,436 
5 -442 
5495 
4.851 
5 - 806 

6.462 
5.511 

5.208 
4.471 
5,658 
4.598 
4.020 

5.352 
5.964 

6.613 
7 * 064 

5.658 

4.615 
4,147 

5.452 
6.066 
6.711 
5,980 
7.158 

0.197 - 
0,251 

(0.280) 0-278 J 
0.220 0.24 

0.195 
0,197 

0,233 
0.233 I 
0,251 
0.271 

(0.280) 
(0,288) 

0*197 } 0.22 
0.233 

0,251 
0.271 

(0 * 2 82) 
(0.2 88) 

€ 1  (with 
static 

potential)E 

0.35 
0-39 

0.165 
0.25 
0.28 
0.30 
0.28 
0.26 
0.29 

0.24 
0.22 
0.25 
0.24 
0.20 

0.16 
0,135 
0.12 
0.16 
0.18 

0.22 
0.21 

0.20 
0.20 
0.175 
0.16 
0.15 

28100 
33200 

9300 
706 
630 

41 3 
542 
336 

26 
50 
29.2 
43.5 
73.2 

170.3 
838.5 
759.0 
161.9 
73.8 

> b  

2.3 
1 *8 

2.0 
2.1 
2.8 
3.4 
5.2 

col. 5 

9271 
7966 

- 
350 
348 
363 
320 
323 
308 

14.6 
13.6 
13.8 
14.2 
14.5 

114.4 
118.0 
122.0 
127.0 
125.0 

1.2 
1.3 

2.3 
2.3 
2.4 
2.3 
2.4 

c l  as in 
col. 6 

12766 
5992 

11482 
695 
348 
248 
320 
503 
252 

14.6 
19.3 
11.8 
14.2 
33.1 

114.4 
364.0 
936.0 
127.0 
59.9 

1.2 
1.4 

1.6 
1.6 
2.4 
3 4 
3.9 

Experi- 
mental 
(H.F.), 

12000 
5100 

13000 
640 
360 
250 
350 
480 
280 

13 
20 
11 
14 
30 

116 
390 
830 
120 

57 

1.1 
1 *3 

1 e5 
1.7 
2.3 
2.9 
3.9 

a Shell-model calculations (Poggenburg et al. 1969). 
(H.F.), for this isotope could not be calculated as reduced H.F. is not given. 
For (H.F.)8 in column 8, one could get closer agreement than shown if the average € 8  

is taken to be 0.378, i.e. up to the third decimal place; which is avoided (cf. S 5). 
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5. Discussion 
I t  may be seen that the formula (16) contains a centrifugal term quite different 

from the ordinary one. I t  may also be pointed out that the matrices ql ,o  are now 
functions of 1-dependent quantities and involve a negative exponent in the integrand. 

In  table 1, the values of R,, R and Rimin are given for all nuclei for which the 
hindrance factors are calculated. The  eccentricity cr and effective deformation para- 
meter % (cf. equation (7.1)) are given for each case in the last two columns. 

In  tables 2 and 3 we list the calculated values of the different potential functions 
which contribute to the resultant barrier. Values are given to show how these different 
functions, namely f ( z )  = (2g'2)(x) - l), u0(y), Z ~ ( ~ ) ( Y ) ,  Avl ,  u2(r)P2, W2(r)E, AKl 
and AKz vary with Y outward in the immediate neighbourhood of the nuclear 
surface. In  the tables and figures E denotes ( E ~ + ( ~ / ~ T ) ~ ~ ~ C ~ ~ )  occurring in equa- 
tion (8.4). The values listed in tables 2 and 3 are only for x angular momentum 
1 = 8 and 2 and for the two extreme cases, 23sPu and 254Fm. Since the results for 
other 2 values and for other nuclei are exactly similar, it is considered sufficient for 
reasons of space to present the values only for these two cases. 

T o  visualize the variations with Y of these potential functions we have plotted 
them relating to 238Pu in the figures 1 and 2. 

I I 
I 

- 
c 

e l o /  

O", 

I 
I 

0 011 I I I 
I3 0 90 I O  0 II 0 12 0 

r ( c m )  

Figure 1. Calculated potential functions in the close neighbourhood of the 
nuclear surface are plotted against Y. The values refer to the 23aPu nucleus and 
are for x angular momentum I = 8. The data are taken from table 2.  The different 
terms represent the electrostatic and the nonlocal potentials, U ~ ( T )  = 2(Z -2 )e2 / r ;  
u2(r)pa is its anisotropic part, AV, and Wa(y)< are defined in equations ( 2 ) ,  

(8.3) and (8.5) respectively, where I denotes (et + (5/4n-)1'2~12). 
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Now, for comparison purposes in figure 2, we have reinserted uo(r) as the reference 
line. The curve ueft (in figure 2) shows the spherically symmetric potential 
which is actually effective in the neighbourhood of the nuclear surface and replaces 
the traditional isotropic electrostatic potential zi0(r) in this region. It is interesting 

10-13 
r Ccm)  

Figure 2.  The cuwes represent the different potential terms as in figure 1. 
The terms AK1 and AKS are given by equations (8.6) and (8.7) respec- 
tively, The purely anisotropic parts of the nonlocal potential are denoted by 
A(@ = Zl(r, 8) 2 Y l ( r )  (see equations (8.4) and (8.1). The functions A,, ,  
A L  and A correspond to the directions along the nuclear symmetry axis, at 
right angles to it and along the direction with 6 =  COS-^(^)^ respectively. 

Also see discussion in S 5 .  

to see from figure 2 how the purely anisotropic part of the barrier denoted in 
the tables and the figures by A8 = 2 Y , x Y , ( r ,  6) (cf. equations (8.1) and (8.4)) 
varies with r near the nuclear surface. T o  visualize how this anisotropic potential AB 
varies along different directions we have calculated Ae along three principal directions, 
namely, the direction parallel to the nuclear symmetry axis (i.e. for 0 = 0 or T ) ,  along 
the normal direction at right angles to the symmetry axis (i.e. for 6 = ~ / 2 ) ,  and for the 
direction with 6 = cos-l(+)li2. The  AB function along these directions is denoted in 
table 3 and in figure 2 respectively by A,, ,  A- and A. Also, since AI ,  is primarily 
negative, we have plotted -Al ,  to facilitate comparison with the other curves. 

In  table 4 the calculated values of (H.F.), for different tl angular momenta and 
only for the nucleus 236Pu are shown for the given value of ,& and with varying c l .  
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It is worth noticing how, for a given I, the theoretical (H.F.), changes with e l .  The 
values are plotted in figure 3. 

The  curves in figure 3 clearly show that with appropriate values of E ,  it is possible 
to get exact quantitative agreement between the calculated and the empirical values 

Q 1 - - 1 1 - -  0.10 0.16 0.22 0.28 034 

Nonlocality pa ramete r  E~ 

Figure 3. Calculated hindrance factors from equation (16) for different CI 
angular momenta and for the 23BPu nucleus are plotted for the given ,& and as 

functions of the nonlocal deformation parameter ci. Also see 5 5 ,  

of (H.F.), for all even I values in this case. Similar curves can, of course, be obtained 
for other nuclei and the same holds good for all the cases to which the present con- 
siderations apply. However, it should be mentioned that such agreements may require 
the values of E :  to be given up to the third or the fourth place of decimals. In  view of 
the approximations used and the fact that the data for p2 are known up to the second 
place of decimals, it would be unrealistic to claim such accuracies in the values of e l .  
We therefore list in table 6 the chosen values of e l  correct up to the second place of 
decimals-except for three CI groups (namely, 2 = 2 for 246Cf, I = 4 for 242Cm and 
I = 6 in 230Th) €or which the calculated (H.F.), is very sensitive to E : ;  here we 
have given the averages of their lower and upper limits of e l .  

Furthermore it should be mentioned that for I = 8 we have given in columns 5 
and 6 of tabIe 5 the values of both C8, a8 and the corresponding CO, a,, the latter being 
shown in parentheses immediately below the respective C8 and a8. It is necessary 
that, for 1 = 8, q,,, and qo,8 be calculated as functions of CO, a, and C8, a8 respectively, 
strictly in accordance with equations (13.1) and (13.5). This is because C8 differs 
from 5, and a8 from a, considerably ( E  energy being normalized for 5, and a, in 
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accordance with the definition of (H.F.)]), On the other hand, for 1 = 6, 5 6 )  a, are 
nearly the same as lo, a. respectively for the same o! energy E,. The differences 
between 5, and lo and those between a ,  and a. are still less for 1 < 6. Hence for 
1 < 6 it would be sufficiently accurate to take the same values of 11, a I  in calculating 
both qo,o and qo, l .  This is, however, not desirable for 1 = 8 as in that case an avoidable 
error of about 25./;, in the values of (H.F.), will occur. In  this connection it may be 
mentioned that the empirical values of (H.F.), for 238Pu, and (H.F.), and (H.F.), for 
230Th, given by Perlman and Rasmussen (1957)) differ considerably from the values 
obtained later by Hanna (1959). We have given in table 6 the values of E ,  correspond- 
ing to the later values shown in the column 10 of the table. 

Finally, calculations of (H.F.)2 are given for all relevant elements with 
90 < Z < 100, but not for all isotopes-because this is unnecessary as the values of 
(H.F.)2 are nearly the same for a given 2. 

6. Conclusions 
From the results given in table 6, one can summarize the trend of variations of 

E ,  with 1, z and A and one would come to the following conclusions. 
(i) I n  the first place the nonlocality parameter e l ,  as determined by the empirical 

values of (H.F.),, is found to increase systematically with increasing I if 1 2 4 (the 
case of 1 = 2 is discussed below). As seen from table 6, e I  also varies with 2 and A. 
But this latter variation being small, the ranges of e l  for I = 8, 6 and 4 remain discrete. 
For example, e8 is found to lie between 0.40 and 0.35, whereas € 6  varies between 0-30 
and 0-25 (except for the unusual case of 230Th with (H.F.), = 13 000, for which 
e6 = 0*165), and the values of E ,  lie between 0.25 and 0.12. At the same time it is 
also plausible that e I  is more sensitive to 1 than to Z and A ;  the latter variations are 
not only small but also of the same order as those of the other parameter, namely 
,82,0. It may also be noticed that, for I = 8 and 6, E !  differs only in the second place of 
decimals, whereas, for 1 < 4, apparently there is wider variation of E ,  with 2 and A 
than normally expected. 

(ii) From the striking agreement obtained here between the theoretical and 
empirical (H.F.), values, and also from the consideration that the nonlocal effects are 
likely to be more predominant for higher values of 1, one is led to conclude that the 
values of e8 and €6 given in table 6 are sufficiently accurate and the effects other than 
those due to nonlocality would probably cause only minor changes of e8 and € 6 .  

(iii) One may think that the CI groups with 1 = 4 would probably represent the 
marginal case, so far as the relative importance of the effects of the momentum- 
dependent potential and the other effects considered in earlier works are concerned. 
This may be suggested because the values of E , ,  as already mentioned, show some- 
what wider variations with Z and A than normally expected from the findings for 
e8 and e6. Apparently this straggling of E ,  may be considered as indicative of the 
existence of other influences not taken into account in the present theory. But on 
a closer scrutiny the nuclei appear to separate out in two groups. For the Jirst 
group, with 30 < Z < 94, E* varies from 0.20 to 0.25, whereas for the second 
group of nuclei, with 94 < Z < 100, E* ranges from 0.12 to 0.18 with the minimum 
at Z = 96. 

It is worth pointing out that cc emissions with 1 = 8 and 6 are known to occur 
(with one exception) only for the second group of nuclei, and for them €6 lies in the 
range 0.25 to 0.30. Thus the order of variation of E ,  with Z and A is the 
same as that for e6 .  Besides, the range of e ,  (i.e. from 0.12 to 0.18) is lower 
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than that of e6 by about as much as the latter is below the range of E*. Hence the 
values of e4  given in table 6 are consistent. It is, therefore, not possible at present 
to say to what extent the effects,, other than those due to nonlocality, would be sig- 
nificant in controlling the hindrance factors for transitions with x angular momentum 
I = 4. 

(iv) For I = 2, however, there are unmistakable indications of the existence of 
various influences controlling the x decay, because one finds from table 6 that e2 
not only shows wider variations with Z and A but also turns out to be in general 
higher than what would be expected from the trend of variations of e l  with I ,  Z and A. 
As stated in the previous subsection (iii), the values of E& lie in the range from 0.12 to 
0.18 and hence e2 should not be higher than 0.12. On the other hand e2 is found to 
be in the range 0-15 to 0.22. It is also to be noticed that, for almost all nuclei, ea > c4. 
It therefore appears that for alpha angular momentum I = 2 there is some mixing of 
all the different influences, and the fact that the values of e2 come out to be higher 
than expected may be interpreted as a sort of compensation for the inaccuracies in 
the values of e2 due to neglect of the other effects (cf. $ 1) in the present discussion. 
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